Polynomially Bounded Forgetting
نویسنده
چکیده
Forgetting is one of the most important concepts in logic based problem solving, both from a theoretical and a practical point of view. However, the size of the forgetting result is exponential in worst case. To address this issue, we consider the problem of polynomially bounded forgetting, i.e., when the size of the forgetting result can be expressed polynomially. We coin the notion of polynomially bounded forgetting and distinguish several different levels. We then show that forgetting a set of variables under a polynomial bound can be reduced to forgetting a single one. However, checking variable polynomially bounded forgetting is Σ 2 complete. Hence, we identify some sufficient conditions for this problem. Finally, we consider polynomially bounded forgetting in CNF formulas.
منابع مشابه
Polynomially bounded solutions of the Loewner differential equation in several complex variables
We determine the form of polynomially bounded solutions to the Loewner differential equation that is satisfied by univalent subordination chains of the form $f(z,t)=e^{int_0^t A(tau){rm d}tau}z+cdots$, where $A:[0,infty]rightarrow L(mathbb{C}^n,mathbb{C}^n)$ is a locally Lebesgue integrable mapping and satisfying the condition $$sup_{sgeq0}int_0^inftyleft|expleft{int_s^t [A(tau)...
متن کاملPolynomially Bounded Recursive Realizability
A polynomially bounded recursive realizability, in which the recursive functions used in Kleene’s realizability are restricted to polynomially bounded functions, is introduced. It is used to show that provably total functions of Ruitenburg’s Basic Arithmetic are polynomially bounded (primitive) recursive functions. This sharpens our earlier result where those functions were proved to be primiti...
متن کاملPolynomially Unbounded Product of Two Polynomially Bounded Operators
where S is a unilateral forward shift of infinite multiplicity, S∗ is its adjoint, and Yα is a matrix (αi+jCi+j ), with {αk}k∈N a sequence of complex numbers, and {Ck}k∈N a family of operators satisfying the “canonical anticommutation relations”. We exhibit a sequence {αk} such that T is polynomially bounded but T⊗T is not. This shows that the product of two commuting polynomially bounded opera...
متن کاملPolynomially bounded C0-semigroups
We characterize generators of polynomially bounded C0-semigroups in terms of an integrability condition for the second power of the resolvent on vertical lines. This generalizes results by Gomilko, Shi and Feng on bounded semigroups and by Malejki on polynomially bounded groups.
متن کاملA Dilation Theory for Polynomially Bounded Operators
In this paper we construct a special sort of dilation for an arbitrary polynomially bounded operator. This enables us to show that the problem whether every polynomially bounded operator is similar to a contraction can be reduced to a subclass of it.
متن کامل